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a b s t r a c t

Phase stability testing is an important subproblem in phase equilibrium calculations. Phase stability
analysis consists in finding either all stationary points or only the global minimum of the tangent plane
distance (TPD) function. The TPD surface is non-convex and may be highly non-linear, and many phase
stability calculations are rather difficult. In this work we are solving the phase stability problem using
the tunneling global optimization method and a modified objective function; all stationary points of the
eywords:
hase stability analysis
angent plane distance
tationary points
lobal optimization
unneling
ultiple global minima

TPD function are global minima of this objective function. For finding all its global minima at the same
level (known, with objective function equal to zero), we exploit a unique feature of the tunneling method,
which is able to find efficiently and reliably multiple minima at the same level. Numerical experiments for
various difficult phase equilibrium problems show that the tunneling method is a powerful and reliable
tool for global phase stability testing.

© 2009 Elsevier B.V. All rights reserved.

ubic equations of state

. Introduction

Phase stability analysis is a key step in phase equilibrium cal-
ulations. It provides the correct answer on whether or not a feed
s thermodynamically stable at given conditions. It can be used for
hase assignment (vapor or liquid), for initializing a phase split, and
or validating the results of flash calculations (i.e. the phase repar-
ition corresponds to the global minimum of Gibbs free energy).
he phase stability criteria first set by Gibbs [1] were clearly pre-
ented and discussed by Baker et al. [2] and Michelsen [3]. The most
requent formulation of the phase stability problem is in terms
f Michelsen’s TPD function and the problem is solved either by
irectly minimizing the TPD function or by solving an equivalent
on-linear system of equations.

The difficulty of phase equilibrium calculations consists in the
ighly non-linear and non-convex form of the objective function

hat gives no guarantee that the global minimum will be found.
he complexity of the problem increases near critical points and
hase boundaries. Local methods may be very fast, but they are
nding a single stationary point for a given initial guess, which

∗ Corresponding author at: CNRS UMR 5150, Laboratoire des Fluides Complexes,
niversité de Pau et des Pays de l’Adour, B.P. 1155, 64013 Pau Cedex, France.
el.: +33 5 5940 7699; fax: +33 5 5940 7725.

E-mail addresses: dnichita@univ-pau.fr, dvnichita@hotmail.com (D.V. Nichita).

385-8947/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
oi:10.1016/j.cej.2009.05.011
can be a local minimum or a saddle point. Even global methods
do not all guarantee that the global minimum is found, and they
are generally expensive, the computation cost being sometimes
unaffordable, even for moderate problems. For solving the phase
stability problem, several global optimization methods have been
used: Newton-Interval [4,5], homotopy continuation [6], branch
and bound [7,8], simulated annealing [9,10], and tunneling [11–17].
Wasylkiewicz et al. [18] track ridges and valleys of the TPD function
to find its stationary points. The dividing rectangles method used
by Saber and Shaw seems to be highly efficient for solving phase
stability [19]. Some (few) of these methods are looking for all sta-
tionary points, while others give only the global minimum of the
TPD function.

Balogh et al. [20] have recently successfully used a modified
objective function [21] (see also [22,23]) for phase stability anal-
ysis, and a stochastic method based on a space search, that does
not need gradient evaluations. The modified objective function has
the particularity that multiple global minima are at the same level
(known, with the value of the objective function equal to zero).

In this work we adopt the same modified objective function
for phase stability, but we use the tunneling global optimization

(gradient-based) method, which has a feature that recommends
it particularly for this specific problem: the ability of reliably and
efficiently finding multiple minima at the same level. For instance,
all the 18 global minima at the same level of the Schubert func-
tion (which even for n = 2 exhibits a highly complex landscape with

http://www.sciencedirect.com/science/journal/13858947
http://www.elsevier.com/locate/cej
mailto:dnichita@univ-pau.fr
mailto:dvnichita@hotmail.com
dx.doi.org/10.1016/j.cej.2009.05.011
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Nomenclature

D tangent plane distance function
D̄ dimensionless tangent plane distance function
f objective function
fi fugacity of component i
ki given by Eq. (4)
k* values of k at stationary points
kij binary interaction parameter between components

i and j
n number of independent variables
nc number of components
nlev maximum number of global minima searched by the

code
p pressure
R universal gas constant
T temperature
T(x) tunneling function
Tc(x) classical tunneling function
Te(x) exponential tunneling function
xi mole fraction of component i in the trial phase
x independent variable (Section 3)
xm stationary points
xtu feasible point in another valley of the objective func-

tion
Z compressibility factor
zi feed composition

Greek letters
ıij the Kronecker delta
ϕi fugacity coefficient of component i
�m strength of the pole at the point xm

˚ modified objective function

Subscript
i,j component index

Superscripts
T transposed
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* at stationary points

60 local minima) have been successfully found with the tunnel-
ng method [24]. The cubic equations of state (EoS) we use here are
he Soave–Redlich–Kwong (SRK) EoS [25], and the Peng–Robinson
PR) EoS [26]. The tunneling method is tested for several difficult
roblems involving mixtures from binary to quaternary.

In our previous work on phase stability with tunneling, only the
lobal minimum of the TPD function was searched; the entire phi-
osophy behind this paper is different: in this paper we find (i) all
tationary points of the objective function, (ii) using a feature of
he tunneling global optimization method not used before in phase
tability calculations, and (iii) using a modified objective function
hich is highly appropriate for exploiting this particular ability of

he tunneling method. Knowledge of all stationary points is impor-
ant from both theoretical and practical points of view; towards the
nd of the manuscript, we discuss the potential use of all known sta-
ionary points in initializing multiphase equilibrium calculations.

The paper is structured as follows: we first present the modified

bjective function used in this work, then we describe the tunneling
lobal optimization method, with emphasis to its ability to find
ultiple minima at the same level; results are presented for various

ifficult numerical experiments, before resuming a discussion and
he concluding remarks.
ering Journal 152 (2009) 251–263

2. The modified TPD function

The dimensionless TPD function, Michelsen [3], has the form

D̄(x) = D(x)
RT

=
nc∑

i=1

xi(ln fi(x) − ln fi(z)) (1)

where z = (z1, . . ., znc)T is the feed composition and x is the
trial phase composition. The vector of primary variables is
x = (x2, . . ., xnc)T; here we have considered the mole fraction of com-
ponent 1 as dependent variable

x1 = 1 −
nc∑

i=2

xi (2)

The minimization problem is

Find min D̄(x)
s.t. 0 ≤ xi ≤ 1; i = 2, nc

The TPD function can be written as

D̄(x) =
nc∑

i=1

xiki(x) (3)

where

ki(x) = ln ϕi(x) + ln xi − hi(z); i = 1, nc (4)

and

hi(z) = ln ϕi(z) + ln zi; i = 1, nc (5)

In this work we use the modified objective function for phase
stability analysis [21]:

˚(x) =
nc∑

i=1

[ki+1(x) − ki(x)]2 (6)

where for convenience knc+1(x) = k1(x).
The modified minimization problem is

Find min ˚(x)
s.t. 0 ≤ xi ≤ 1; i = 2, nc

The minimum value of the objective function is ˚(x*) = 0, where
x = x* are ns stationary points of ˚, for

k1(x∗) = k2(x∗) = · · · = knc(x∗) = k∗ (7)

From Eq. (4), for each minimizer x* we have

k∗
i = ki(x

∗) = ln ϕi(x
∗) + ln x∗

i − hi(z); i = 1, nc (8)

Geometrically, k* [21] is the distance between two hyperplanes
tangent to the Gibbs energy surface and parallel to the hyperplane
tangent at z. The zeros of the modified objective function occur
for the same mole fractions x as the stationary points of the TPD
function, and k* is equal to D̄ (as it follows Eq. (8)).

A mixture is stable at given pressure, temperature and compo-
sition if all k* ≥ 0; a negative value of k* indicates an unstable feed
which split into two or more stable phases. To establish the phase
status for a given feed one must find all the global minima at the

same level (˚ = 0). Finding all zeros of ˚ is definitely not an easy
task. The tunneling gradient-based global optimization method has
an extremely attractive feature that can be used to solve this partic-
ular problem: its ability to efficiently and reliably find all multiple
minima at the same level.
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To apply a gradient-based optimization method one needs the
lements of the gradient vector

j = ∂˚

∂xj
= 2

nc∑
i=1

(ki+1 − ki)

(
∂ki+1

∂xj
− ∂ki

∂xj

)
; j = 2, nc (9)

here

∂ki(x)
∂xj

= ∂ ln fi(x)
∂xj

− ∂ ln fi(x)
∂x1

; i = 1, nc; j = 2, nc (10)

nd

∂ ln fi(x)
∂xj

= ıij

xi
+ ∂ ln ϕi(x)

∂xj
; i, j = 1, nc (11)

Here the partial derivatives of fugacity coefficients with respect
o mole fractions are evaluated analytically. For cubic EoS this is
simple task (and derivatives can be coded quite efficiently [27]),
ut for more complex, non-cubic EoS this could be rather difficult,
nd numerical derivatives must be used. Automatic differentiation
ould be an alternative option.

. The tunneling global optimization method

The tunneling methods [28–31] are deterministic methods in
he sense that they find a sequence of local minima with a mono-
onically decreasing value of the objective function. They have a

inimization phase where starting from an initial point x0, a local
inimum x* is found with f* = f(x*), and then the method tunnels

in the tunnelization phase) to another valley of the objective func-
ion, which means finding a feasible point xtun, with f(xtun) ≤ f* (the
eader can find an illustration of the basic principles of the tunnel-
ng method in Figs. 1 and 2 from Ref. [15]). This point will be taken as
he initial point x0 for the next minimization phase and these two
hases are repeated alternatively until convergence to the global
olution is achieved. These methods have the following properties:
hey find a sequence of local minima with decreasing function val-
es f (x∗

1) ≥ f (x∗
2) ≥ · · · ≥ f (x∗

G), ignoring all the local minima with
arger objective function than the best already found; as in any other

ethod they can find minima at the same level and never find again
he same minimum. For both phases, minimization and tunneliza-
ion, the same local optimization descent method can be used. The
radient-based local bounded method used by the code used in this
ork is a limited memory quasi-Newton method, L-BFGS-B [32,33].

n the BFGS method the Hessian is approximated based on the infor-
ation from previous iterations, and the method converges with a

upralinear rate. An exact Hessian (full Newton approach) gives a
econd order convergence, but has a smaller, in some cases much
maller, convergence radius. Note that BFGS always converges start-
ng from the standard initialization of phase stability, while a full
ewton method is usually not converging starting from the same

nitial guess, sculptured initialization or a number of iterations of
ome other methods (like for instance successive substitution) are
equired.

The step generated by the bound constrained optimization
ocal method (used in both minimization and tunneling phases)
s designed to force the new iterate to be within the bounds. When
descent direction has been created, a Cauchy step is performed to

ee which independent variables reach their bounds and thus will
emain fixed during this step; at this level the linear constraint (Eq.
2)) is also checked to decide if the variables can be moved along the
escent direction. After that, a linear search is performed to find the

tep-length on the free variables, and if the variables of the linear
onstraint were free, the step-length will take into consideration
he linear constraint again, to ensure that the step is taken preserv-
ng the constraint satisfaction, which ensures that the dependent
ariable (x1) is positive.
ering Journal 152 (2009) 251–263 253

The tunneling methods also have a stochastic element as they
take the initial point to start the search for points in another valley
(tunnelization phase) in random directions within a neighbourhood
of the last local minimum. It is this stochastic element that can be
exploited to perform a smart exploration of the feasible space and
a parallelization, see [34]. A detailed description of the sequential
methods can be found in Levy and Montalvo [29] and Barron and
Gomez [31]. Here we give only a brief description.

Once a local minimum has been obtained using any local
method, to be able to tunnel from one valley to another using
gradient-type methods, it is necessary to destroy the minimum,
placing a pole at the minimum point x* and generating directions
that would move the iterates away from it. To find a point xtun in
another valley with a value less than or equal to f(x*), one has to
solve the following inequality:

T(x) = f (x) − f (x∗) ≤ 0 (12)

and in order to be able to move away from the local minimum,
using gradient information, it is necessary to destroy the minimum
by placing a pole at x* using any of the tunneling functions, either
the exponential tunneling function [31]

Te(x) = (f (x) − f ∗) exp
(

�∗

||x − x∗||
)

(13)

or the classical tunneling function [30]

Tc(x) = f (x) − f ∗

||x − x∗||�∗ (14)

Solving problem (12) now consists in finding xtun such that

Te(xtun) ≤ 0 or Tc(xtun) ≤ 0 (15)

We can take descent directions to solve this inequality problem,
and thus we use the same algorithm used to find the local mini-
mum with appropriate stopping conditions to check convergence
for problem (15).

3.1. Minima at the same level

There are very few methods with the capability to find several
minima at the same level, that is with the same value of the objec-
tive function, f (x∗

1) = f (x∗
2) = · · · = f (x∗

t ), without finding again the
minimum already found.

Although in principle several methods should be able to find
these minima, like branch and bound and interval methods, in prac-
tice the computational cost makes them unaffordable. Stochastic
methods like evolutionary methods cannot guarantee that the same
minimum is not found again, and thus even in the case when the
global level (lower bound) of the function is known, these methods
can never guarantee finite convergence.

One of the most attractive characteristics of the tunneling meth-
ods is the fact that they can find minima at the same level in the
tunneling phase, as in this phase one looks for a point xtu in another
valley where f(xtu) ≤ f*, and the equality implies a point at the same
level f(xtu) = f*. Actually, the local optimization method just checks
in the minimization phase that these points are indeed minima or
simply will iterate to get the desired precision (this will appear in
the tables reporting the solution of our numerical examples). Also,
in order to avoid going back to minima already found (that would
satisfy the equality again), it is necessary to keep “turned-on” the
poles used to destroy the minima found before, and the tunneling

function now becomes

T(x) = (f (x) − f ∗)
t∏

i=1

exp

(
�∗

i

||x − x∗
i
||

)
(16)
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These tolerances allow us to successfully find all the minima at the
same level.
54 D.V. Nichita, S. Gomez / Chemical E

As it could happen that the method encounters several minima
say t) at the same level before it finds the global level, as soon as
minimum at a lower level is found, t is set to 1, as the history of

hese minima will no longer be needed, because the method will
ever find again a point with higher value of the objective function
it always decreases).

The tunneling method has successfully been used for solving
roblems with multiple minima at the same level; for instance
he Schubert problem with n = 2 has 18 global minima which have
een correctly and efficiently found [24]. Actually, this is the first
ime that results on real applications with this feature are being
eported.

.2. Starting points for the tunneling phase

Another key aspect of these methods is how to take the ini-
ial point from which the tunneling search starts. First, and for a
re-fixed number of points, the search will start from points x in a
eighbourhood of the last (and best) local minimum found, and will
e taken along random directions, x = x* + er, where e is a scalar that
efines the neighbourhood and depends on the scale of the prob-

em, and r is a random vector within [−1, 1]. From these initial points
he tunneling search starts looking for a point in another valley,
olving inequality (15). If the search from this set of neighbouring
oints is not successful, another pre-fixed number of random points
re then taken anywhere at the feasible region.

The stochastic element in the tunneling phase is related to the
nitial point of this phase; this initial point is selected in a random
irection from the last local minima found, in a neighbourhood that
epends on the scale of the problem. Then, the number of function
nd gradient evaluations may vary, if the random direction changes,
ut the method will locate all global minima, if sufficient computing
ime is allowed (i.e. a large enough number of initial points in the
unneling phase). The maximum number of initial points allowed
or the tunneling phase serves also to control the amount of com-
uting effort designed to check for global optimality. In this paper,
e have used the default option of max (20, 5n) initial points. This
efault option is chosen on the basis of author’s previous experi-
nce in solving a variety of optimization problems, quite different in
ature, from pure theoretical highly difficult benchmark problems
o large practical problems in petroleum and chemical engineer-
ng.

.3. Precision details

The robustness of the method depends strongly on the proper
election of the different tolerances and of their relative value. Here,
e will describe the most important tolerances related to our appli-

ation problem.
The stopping condition for a successful tunneling, that is T(xk

tu) ≤
, is implemented as follows:(

xk
tu

)
− f (x∗) ≤ TOLT · (1 + |f (x∗)|) (17)

here precision TOLT is to be selected by the user. This parameter
s closely related to the tolerance TOLEV for considering minima to
e at the same level of the objective function value. First we will
erive some bounds for TOLEV.

Suppose x∗
1 and x∗

2 are two different minima at the same level,
.e. f (x∗

1) = f (x∗
2) and x∗

1 /= x∗
2 and xk+1

1 and xk+1
2 are their respective

pproximations that satisfy the criteria:
f (xk+1
i

) − f (xk
i )| ≤ TOLF · (1 + |f (xk+1

i
)|), i = 1, 2 (18)

If the function is well conditioned, the right hand side of Eq. (17)
s a bound for the error on the function values of the exact solutions
Fig. 1. Tolerances for searching multiple minima at the same level.

and the approximated ones, so we have that

|f (xk+1
1 ) − f (xk

1)| ≤ TOLF · (1 + max(|f (xk+1
1 )|, |f (xk+1

2 )|)) (19)

and the same inequality applies for xk+1
2 .

As f (x∗
1) = f (x∗

2) = f ∗ it follows that

|f (xk+1
1 ) − f (xk+1

2 )| ≤ 2 · TOLF · (1 + max(|f (xk+1
1 )|, |f (xk+1

2 )|)) (20)

thus the relative error between the two minima at the same level
will be utmost 2·TOLF. In our code we have selected

TOLEV = TOLF (21)

and the reason will be clear soon after.
In order to properly describe the tolerance TOLT for a successful

tunnelization, it is necessary to clarify its relation to other toler-
ances. When the problem to be solved has many local minima at
the same level (within the tolerance TOLEV), the performance of the
algorithm improves, generally, if these minima are detected and
destroyed using poles. So, in order to be able to find and destroy
those local minima, the following inequality has to be satisfied (see
Fig. 1):

TOLT ≥ TOLEV (22)

Also, to guarantee that the point x∗
tu is effective in another valley,

another condition for TOLT will be

TOLT ≤ TOLF (23)

then the relation between the three tolerances will be

−2 · TOLF ≤ TOLEV ≤ TOLT (24)

We have implemented here

TOLT = TOLF to allow the method to find local minima at the same
level.

Also we must have TOLEV = min(|TOLT|, TOLF); this justifies the
choice in Eq. (21).
3.4. General stopping conditions

The algorithm stops when any of the following criteria is satis-
fied:
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1) In the tunneling phase, the given maximum number of initial
points to start the search for xtu has been reached. The minima
at the same level (known) found are the putative global minima.

2) All the global minima at the same level required by the user,
have been found.

3) The given maximum number of function evaluations has been
reached.

. Results

The ability of the tunneling global optimization method in find-
ng all minima of the modified objective function with ˚ = 0 is tested
or several mixtures, including very difficult conditions. Problems
–5 are benchmark problems for phase stability (taken from Ref.
5]), Problem 6 is from Sun and Seider [6], and Problem 7 is for a
uaternary mixture of Kohse and Heidemann [35], studied by Sun
nd Seider [6] and Zhu et al. [9].

There are two stopping criteria for the minimization routine. The
rst is given by

(˚� − ˚�+1)
max(|˚�+1|, |˚�|, 1)

< FACTR ∗ EPSMACH (25)

here EPSMACH is the machine precision (automatically generated
y the code), FACTR is provided by the user to get desired tolerance,
nd � designates the iteration level.

The second criterion checks the norm of projected gradients

max
=2,nc

∥∥∥∥proj

(
∂˚

∂xj

)∥∥∥∥ ≤ PGTOL (26)

here PGTOL is the required tolerance for the norm of projected
radients.

The first stopping condition is applied to check if the objective
unction has no further decrease, and the second to guarantee that
he iterate is the optimal point. Both conditions are used in the

inimization phase. It should be emphasized that the same local
ptimization routine is used here for both phases: minimization
nd tunnelization. In the minimization phase a local minimum of
he original objective function is found. In the tunneling phase, a
oint in another valley is located. In both phases, a descent direction

s generated and the magnitude of the step in this direction is com-
uted using a line search routine. In the tunneling phase the first
topping condition checks if the tunneling function has sufficient
ecrease, and uses a mobile pole to force further decrease, if the
ondition is not satisfied. As in this phase we are not looking for the
inimum of the tunneling function, but only for a point where the

unneling function is less than or equal to zero, the second condition
s not used in this phase.

We use in all examples very strict tolerances. We consider
ACTR = l.d + 2, corresponding to a high accuracy, and the tolerance
ssociated with the projected norm of the gradient vector PGTOL
s set at 1.d − 8. The value of the objective function at the global

inima is set at 1.d − 12.
It would be very useful to provide the code the maximum

umber of stationary points (to avoid the last tunneling phase).
he number of stationary points of ˚ is not known a priori.
asylkiewicz et al. [18] proposed a topological criterion for station-

ry points relating the number of minima, maxima and saddles in
he case of liquid–liquid equilibrium. Unfortunately, this criterion is
ot valid for systems involving vapor and liquid phases [36]. Sofyan
t al. [37] state that the number of stationary points is always an

dd number. This is not correct and the number of stationary points
an be even; for example, there are two stationary points (a mini-
um and a saddle) for binary mixtures at pressure and temperature

onditions between phase boundaries and the limit of stability test-
ng (see [38]). Starting from the observation that in binary mixtures
ering Journal 152 (2009) 251–263 255

the minima correspond to equilibrium phases or to incipient phases
(near phase boundaries), and admitting that maximum three-phase
may form, we can set the maximum number of stationary points
for binary mixtures (n = 1) at nlev = 5 (three minima separated by
two maxima). For n > 1 (nc > 2) the maximum number of station-
ary points should not be restricted; however, in some examples we
present the results for an imposed nlev, then give separately the
number of function evaluations for the last tunneling phase.

The tunneling method eventually converges to the global min-
imum for any initial guess in the feasible region. One may use of
course the same initialization as for the TPD function.

We use the two-sided initialization of Michelsen [3], as imple-
mented by Nichita et al. [11]. The two initialization types are
denoted here as V initialization (for a vapor-type trial phase with
x(0)

i
= ziKi) and L initialization (for a liquid-type trial phase with

x(0)
i

= zi/Ki). The equilibrium constants are estimated using Wil-
son’s [39] relation.

However, for the modified objective function, one of the min-
ima known in advance is the trivial solution (TS) which is, always
among the desired solutions (it will be visited anyway at some stage
of the calculations), thus we can start at the trivial solution, then
proceed with the tunneling phase for searching the other minima.
Initialization at TS avoids finding first a local minimum with ˚ > 0 in
some cases. Hua et al. [5] also discussed the possibility of discarding
intervals containing the TS.

Here we report results using the three initializations mentioned
above.

4.1. Problem 1: methane–hydrogen sulphide binary mixture

Testing phase stability for the methane (1)–hydrogen sulphide
(2) binary mixture at p = 40.53 bar and T = 190 K is known in the lit-
erature to be a highly difficult problem [3–6,11,12,14,40,20]. The SRK
EoS is used with the binary interaction parameter (BIP) k12 = 0.08.
Six feeds are considered, and results are given in Table 1: feed
composition, stationary points, value of k* at each stationary point
(which equals D̄), the number of function and gradient evaluations
(NFGE) for different initializations, and the state of the mixture.
Note that obviously, the order in which global minima are found is
different for each initialization option (in Tables 1–6, the stationary
points are listed in the order corresponding to L initialization). The
maximum number of global minima for this example is taken as
nlev = 5.

In Fig. 2a the objective function is represented for the equimolar
mixture, with a detail for high methane concentrations in Fig. 2b.
The main difficulty from the optimization point of view of this
problem is the fact that one of the valleys has a very sharp shape,
whereas for instance at the trivial solution valley its neighbourhood
is very flat. Both kinds of problems are known to be difficult for local
optimization gradient-based methods.

For feeds 2–6 there is an interval (from about 0.954 to about
0.978 methane mole fraction) for which the cubic EoS has three
distinct real roots; the fifth stationary point reported by Sun and
Seider [6], Hua et al. [4,5], and Balogh et al. [20] (with a methane
mole fraction of about 0.97) corresponds to Zint (the intermediary
value of the compressibility factor among the three real roots of
the cubic EoS), as can be seen also on a TPD plot, for instance Fig.
2 from Ref. [11]. These kinds of stationary points are not found by
our method since only the root giving the lowest Gibbs free energy
is considered. However, these minima are not of importance for

assessing the phase status or initializing a phase split.

For feed 1, the local minimum with ˚ > 0 can or cannot be cap-
tured, depending on initialization (such a local minimum is found
only if the initialization point is located in the basin attraction of
this solution for the local minimization method; obviously, tunnel-
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Table 1
Problem 1: C1 (1)/H2S (2) at p = 40.53 bar and T = 190 K (SRK EoS).

Feed Feed composition Zeros of ˚(x) k∗(D̄) NFGE (Init. = L) NFGE (Init. = V) NFGE (Init. at TS) State

(M1 + T1 + M2 + T2 + M3 + T3 + M4 + T4)

1 (0.9885, 0.0115) (0.988500, 0.011500) 0 1406(8 + 19 + 8 + 8 + 2 + 1361)a 1081(11 + 20 + 2 + 1048) 1276(1 + 122 + 2 + 1151) Stable
(0.967419, 0.032581) 0.013041

2 (0.9813, 0.0187) (0.981300, 0.018700) 0 827(12 + 16 + 0 + 16 + 3 + 617 + 3 + 160) 745(11 + 39 + 2 + 58 + 2 + 117 + 2 + 514) 974(1 + 37 + 2 + 58 + 2 + 656 + 2 + 216) Unstable
(0.923314, 0.076686) −0.003957
(0.509467, 0.490533) 0.072974
(0.115207, 0.884793) 0.010909

3 (0.93, 0.07) (0.982164, 0.017836) 0.001472 957(9 + 7 + 2 + 24 + 0 + 527 + 0 + 388) 594(11 + 11 + 2 + 16 + 2 + 52 + 2 + 498) 830(1 + 10 + 0 + 11 + 2 + 497 + 2 + 307) Stable
(0.93, 0.07) 0
(0.477089, 0.522911) 0.096508
(0.125733, 0.874267) 0.051296

4 (0.50, 0.50) (0.925382, 0.074618) −0.082521 902(8 + 9 + 2 + 22 + 2 + 484 + 2 + 375) 604(10 + 12 + 2 + 19 + 2 + 54 + 2 + 505) 896(1 + 10 + 2 + 23 + 2 + 510 + 3 + 345) Unstable
(0.50, 0.50) 0
(0.118133, 0.881867) −0.056893
(0.981560, 0.018440) −0.079325

5 (0.112, 0.888) (0.980996, 0.019004) 0.002401 832(8 + 11 + 2 + 22 + 2 + 442 + 2 + 343) 877(11 + 7 + 2 + 12 + 2 + 455 + 2 + 386) 816(1 + 15 + 2 + 16 + 2 + 536 + 2 + 242) Unstable
(0.920821, 0.079179) −0.002462
(0.520317, 0.479683) 0.068221
(0.112, 0.888) 0

6 (0.11, 0.89) (0.980796, 0.019204) 0.011078 908(7 + 12 + 0 + 22 + 2 + 515 + 2 + 348) 820(11 + 8 + 2 + 13 + 2 + 496 + 2 + 286) 857(1 + 15 + 2 + 16 + 2 + 536 + 2 + 283) Stable
(0.919131, 0.080869) 0.005608
(0.527382, 0.472618) 0.072356
(0.11, 0.89) 0

a Local minimum with ˚ = 0.104068 at x = (0.257773, 0.742227) first found.
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Table 2
Problem 2: C1 (1)/C3 (2) at p = 100 bar and T = 277.6 K (SRK EoS).

Feed Feed composition Zeros of ˚(x) k∗(D̄) NFGE (Init. = L) NFGE (Init. = V) NFGE (Init. at TS) State

(M1 + T1 + M2 + T2 + M3 + T3)

1 (0.40, 0.60) (0.40, 0.60) 0 855(8 + 847) 824(8 + 816) 836(1 + 835) Stable

2 (0.68, 0.32) (0.68, 0.32) 0 1733(16 + 8 + 2 + 28 + 2 + 1677) 1750(20 + 8 + 1 + 28 + 1 + 1692) 1716(1 + 8 + 1 + 30 + 1 + 1675) Unstable
(0.687719, 0.312281) −3.6e−7
(0.772465, 0.227535) −0.000335

3 (0.73, 0.27) (0.650287, 0.349713) −0.000295 1520(12 + 9 + 1 + 28 + 1 + 1469) 1503(13 + 9 + 1 + 27 + 1 + 1452) 1534(1 + 7 + 2 + 37 + 2 + 1485) Unstable

4
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(0.73, 0.27) 0
(0.757048, 0.242952) −2.081e−5

(0.90, 0.10) (0.90, 0.10) 0 1371(15 + 1356)

ng will not find a stationary point with ˚ > 0 after finding a first
lobal minimum of ˚). It is located at x1 = 0.2578, with k1 = 0.2078,
2 = 0.4360, and the value of the objective function is ˚ = 0.1041.
his stationary point of ˚ with k1 /= k2 (this means that the hyper-
lane tangent to Gibbs free energy surface cannot be parallel with

¯
he hyperplane at z) is not a stationary point of D; it corresponds to
n inflexion point of D̄, and the current pressure is above the limit
f stability testing (LST, also named limit of parallel tangent [41], or
shadow curve” [42]), in the region where only the trivial solution
xists. This feature is also discussed by Sun and Seider [6]. In the

ig. 2. (a) Objective function for the equimolar C1/H2S mixture (p = 40.53 bar and
= 190 K). (b) Objective function for the equimolar C1/H2S mixture (p = 40.53 bar
nd T = 190 K). Detail.
1352(10 + 1342) 1272(1 + 1271) Stable

single phase region, global minima with k* > 0 exist only between
the phase boundary and the LST; on the LST, a non-trivial stationary
point of TPD is a saddle point.

The minimum corresponding to Zint is at x1 = 0.9763, with
k1 = k2 = 1.281. Fig. 3a and b shows the objective function for this

feed. In Fig. 4 the TPD function is represented, showing that the
branch of the intermediary value of Z is not corresponding to the
minimum Gibbs free energy; this is the reason why apparently a
solution found by other authors is missed.

Fig. 3. (a) Objective function for the C1/H2S mixture (feed 1, p = 40.53 bar and
T = 190 K). (b) Objective function for the C1/H2S mixture (feed 1, p = 40.53 bar and
T = 190 K). Detail.
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Table 3
Problem 3: C2 (1)/N2 (2) at p = 76 bar and T = 270 K (PR EoS).

Feed Feed composition Zeros of ˚(x) k∗(D̄) NFGE (Init. = L) NFGE (Init. = V) NFGE (Init. at TS) State

(M1 + T1 + M2 + T2 + M3 + T3)

1 (0.90, 0.10) (0.90, 0.10) 0 1039(10 + 1029) 1862(9 + 312 + 7 + 1534)a 987(1 + 986) Stable

2 (0.82, 0.18) (0.505590, 0.494410) −0.009746 2067(11 + 9 + 2 + 235 + 2 + 1808) 2099(11 + 9 + 2 + 235 + 2 + 1840) 2073(1 + 7 + 0 + 235 + 2 + 1828) Unstable
(0.82, 0.18) 0
(0.703950, 0.296050) 0.005789

3 (0.70, 0.30) (0.510582, 0.489418) −0.013792 2309(11 + 11 + 2 + 240 + 0 + 2045) 2187(10 + 11 + 2 + 240 + 0 + 1924) 2229(1 + 10 + 2 + 255 + 2 + 1959) Unstable
(0.823275, 0.176725) −0.006865
(0.70, 0.30) 0

4 (0.56, 0.44) (0.56, 0.44) 0 1960(11 + 7 + 2 + 30 + 2 + 1908) 1935(12 + 7 + 2 + 29 + 2 + 1883) 1903(1 + 7 + 2 + 29 + 2 + 1862) Unstable
(0.664692, 0.335308) 0.002643
(0.845281, 0.154719) −0.015530

5 (0.40, 0.60) (0.40, 0.60) 0 2252(7 + 3 + 7 + 2235)a 1568(7 + 1561) 1573(1 + 1572) Stable

a Local minimum with ˚ > 0 first found.

Table 4
Problem 4: C1 (1)/CO2 (2) at p = 60.8 bar and T = 220 K (PR EoS).

Feed Feed composition Zeros of ˚(x) k∗(D̄) NFGE (Init. = L) NFGE (Init. = V) NFGE (Init. at TS) State

(M1 + T1 + M2 + T2 + M3 + T3)

1 (0.90, 0.10) (0.90, 0.10) 0 1321(15 + 1306) 1348(9 + 1339) 1313(1 + 1312) Stable

2 (0.80, 0.20) (0.502644, 0.497356) −0.007427 2720(9 + 15 + 2 + 1086 + 2 + 1606) 2730(8 + 18 + 2 + 1112 + 2 + 1588) 2479(1 + 7 + 1 + 1182 + 2 + 1286) Unstable
(0.741188, 0.258812) 0.002206
(0.80, 0.20) 0

3 (0.70, 0.30) (0.642304, 0.35769) −0.000188 2563(12 + 10 + 1 + 707 + 2 + 1831) 2556(12 + 10 + 1 + 677 + 2 + 1854) 2522(1 + 8 + 1 + 693 + 1 + 1818) Unstable
(0.70, 0.30) 0
(0.815263, 0.184737) −0.007004

4 (0.57, 0.43) (0.57, 0.43) 0 2910(9 + 15 + 2 + 1305 + 2 + 1577) 2499(9 + 15 + 2 + 1253 + 1 + 1219) 2775(1 + 15 + 2 + 1239 + 2 + 1516) Unstable
(0.726852, 0.273148) 0.003164
(0.808873, 0.191127) −0.001310

5 (0.40, 0.60) (0.40, 0.60) 0 1574(12 + 1562) 1545(12 + 1533) 1607(1 + 1605) Stable
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Table 5
Problem 5: C1 (1)/C2 (2)/N2 (3) at p = 76 bar and T = 270 K (PR EoS).

Feed Feed composition Zeros of ˚(x) k∗(D̄) NFGE (Init. = L) NFGE (Init. = V) NFGE (Init. at TS) State

(M1 + T1 + M2 + T2 + M3 + T3)

1 (0.1, 0.6, 0.3) (0.101616, 0.586724, 0.311659) −5.889e−6 4352(17 + 49 + 2 + 611 + 7 + 3666) 4817(30 + 72 + 2 + 312 + 0 + 4401) 4800(1 + 63 + 2 + 306 + 2 + 4426) Unstable
(0.1, 0.6, 0.3) 0
(0.067797, 0.799168, 0.133035) −0.014829

2 (0.30, 0.55, 0.15) (0.245094, 0.658130, 0.096776) −0.001175 4679(27 + 35 + 2 + 1645 + 2 + 2968) 4493(31 + 45 + 2 + 1273 + 2 + 3140) 4442(1 + 45 + 10 + 1245 + 2 + 3139) Unstable
(0.30, 0.55, 0.15) 0
(0.297372, 0.555600, 0.147028) 3.395e−7

3 (0.38, 0.54, 0.08) (0.38, 0.54, 0.08) 0 4488(36 + 4452) 4425(27 + 4398) 4457(1 + 4456) Stable

4 (0.05, 0.90, 0.05) (0.05, 0.90, 0.05) 0 3070(17 + 3053) 3127(13 + 118 + 17 + 2979)a 3060(1 + 3059) Stable

a Local minimum with ˚ > 0 first found.

Table 6
Problem 6: C1 (1)/CO2 (2)/H2S (3) (PR EoS).

Feed Feed (z1, z2, z3), T (K)/p (bar) Zeros of ˚(x) k∗(D̄) NFGE (Init. = L) NFGE (Init. = V) NFGE (Init. at TS) State

(M1 + T1 + M2 + T2 + M3 + T3 + M4 + T4 + M5)

1 (0.4989, 0.0988, 0.4023) (0.919390, 0.034316, 0.046294) −0.014587 3148(15 + 21 + 3 + 390 + 1 3162(17 + 20 + 1 + 835 + 2 + 2980(1 + 17 + 8 + 817 + 1 + Unstable
208.5/55.1 (0.244825, 0.091250, 0.663925) −0.006804 + 883 + 1 + 1832 + 2) 670 + 2 + 1614 + 1) 403 + 2 + 1729 + 2)

(0.4989, 0.0988, 0.4023) 0
(0.817398, 0.059947, 0.122655) −0.009693
(0.858944, 0.050589, 0.090466) −0.009446

2 (0.4989, 0.0988, 0.4023) (0.911403, 0.036794, 0.051803) −0.013474 3286(19 + 19 + 1 + 386 3024(16 + 19 + 1 + 287 3115(1 + 21 + 1 + 327 Unstable
210.5/57.5 (0.255085, 0.092335, 0.652580) −0.005710 + 2 + 2859) + 2 + 2699) + 2 + 2763)

(0.4989, 0.0988, 0.4023) 0

3 (0.48, 0.12, 0.40) (0.902932, 0.044559, 0.052509) −0.005454 3245(17 + 22 + 3 + 423 + 3388(19 + 17 + 2 + 438 + 2 + 2946(1 + 17 + 1 + 520 + 0 + Unstable
210.5/57.5 (0.289802, 0.116631, 0.593567) −0.002238 1 + 611 + 1 + 2167 + 2) 1193 + 1 + 1714 + 2) 932 + 2 + 1472 + 1)

(0.48, 0.12, 0.40) 0
(0.766632, 0.081445, 0.151923) −0.005460
(0.861572, 0.057381, 0.081047 −0.003710

4 (0.4989, 0.0988, 0.4023) (0.900477, 0.040822, 0.058701) −0.184860 4138(16 + 161 + 3 + 817 3956(12 + 18 + 1 + 362 3762(1 + 18 + 1 + 305 Unstable
227.55/48.6 (0.4989, 0.0988, 0.4023) 0 + 2 + 3239) + 1 + 3562) + 1 + 3436)

(0.277888, 0.094488, 0.627624) −0.005152
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BIPs k12 = 0.1005, k13 = 0.0755, and k23 = 0.0999 taken from Ref. [37]).
Results (for nlev = 5) are presented in Table 6. All feeds are unstable
at given conditions. For two feeds (1 and 3), there are five stationary
points: the TS and four with negative TPD; if nlev is unrestricted, a
fifth tunneling phase takes between 3000 and 4000 NFGE to ascer-
ig. 4. TPD function for the C1/H2S mixture (feed 1, p = 40.53 bar and T = 190 K).

For comparison in terms of efficiency, the stability routine in the
ode TUNPEQ [11] requires 500–700 NFGE for feeds 1–6 to find (and
alidate) only the global minimum of the TPD function (without
nding all stationary points). For all selected feeds, there are maxi-
um four global minima of ˚; fourth tunneling phase ensures that

here are not additional global minima.

.2. Problem 2: methane–propane binary mixture

The binary mixture methane (1)–propane (2) is studied with
he SRK EoS (with k12 = 0.029) at p = 100 bar and T = 277.6 K for four
eeds. Results are given in Table 2. Feeds 2 and 3 are difficult ones
t these conditions. The objective function for feed 2 is plotted in
ig. 5a, with a detail in Fig. 5b. For feed 2, the minimum near the
rivial solution corresponds to a small positive maximum of the
PD function. Note the extremely small value (about 10−8) for the
aximum of ˚ separating the two close minima, which makes this

roblem a difficult one. For both unstable feeds, the points defined
y test temperature and pressure are located inside the spinodal
urve (two global minima with k* < 0).

.3. Problem 3: ethane–nitrogen binary mixture

This is a mixture of ethane (1) and nitrogen (2) at p = 76 bar and
= 270 K. The PR EoS is used with k12 = 0.08. Results for the five

eeds (two stable and three unstable) studied by Hua et al. [5] are
iven in Table 3. For the stable feeds, a local minimum with ˚ > 0
with k1 /= k2, thus these are not stationary points of the TPD func-
ion) is first found in two cases. They are located at x1 = 0.617189
or feed 1, and at x1 = 0.763015 for feed 5. For feeds 2 and 4 test
oints are located between spinodal and saturation curves (only
ne minimum with k* < 0), while for feed 3 the test point is inside
he spinodal curve.

.4. Problem 4: methane–carbon dioxide binary mixture
This is a mixture of methane (1) and carbon dioxide (2) at
= 60.8 bar and T = 220 K. We use the PR EoS with k12 = 0.095. Results
re presented in Table 4 for five feeds (from Ref. [5], two stable and
hree unstable). Note the increased number of NFGE in the second
unneling phase (to reach the valley of the third global minimum)
s compared to previous binary examples.
ering Journal 152 (2009) 251–263

4.5. Problem 5: methane–ethane–nitrogen ternary mixture

Stability testing for the methane (1)–ethane (2)–nitrogen (3)
ternary mixture at T = 270 K and p = 76 bar (see results in Table 5)
may be quite difficult for some feeds. The PR EoS is used, with
k12 = 0.021, k13 = 0.038, and k23 = 0.08. For feeds 1 and 2 (both unsta-
ble), the difficulty is given by a zero of the objective function
(corresponding to a very small negative value of the TPD func-
tion) located in the very close proximity of the trivial solution. For
feed 4 (stable), for one initialization (at TS) a local minimum with
˚ = 0.8577 is first found at x* = (0.124182, 0.588054, 0.287764)T,
with k1 /= k2 /= k3, thus an additional minimization/tunnelization
cycle is required.

4.6. Problem 6: methane–carbon dioxide–hydrogen sulphide
ternary mixture

The phase stability of a ternary mixture of methane (1)–carbon
dioxide (2)–hydrogen sulphide (3) is analyzed for the four cases
studied by Sun and Seider [6]. The PR EoS is used (with Tc, pc, ω and
Fig. 5. (a) Objective function for the C1/C3 mixture (feed 2, p = 100 bar and
T = 277.6 K). (b) Objective function for the C1/C3 mixture (feed 2, p = 100 bar and
T = 277.6 K). Detail.
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Table 7
Problem 7: flash of quaternary C1 (1)/CO2 (2)/nC6 (3)/H2S (4) at p = 42.5 bar and T = 200 K (SRK EoS and PR EoS).

Phase Mole fractions, SRK EoS Mole fractions, PR EoS

Component Phase Component Phase

L1 (0.48814649, 0.07397676, 0.05777089, 0.38010587) 0.394684 (0.52417338, 0.06961911, 0.04993429, 0.35627322) 0.473870
L2 (0.17409520, 0.06436036, 0.01011867, 0.75142865) 0.260129 (0.18405194, 0.06113260, 0.00813007, 0.74668539) 0.323767
V (0.95045598, 0.02301266, 0.00002280, 0.02650856) 0.345186 (0.94888913, 0.02281486, 0.00002671, 0.02826930) 0.202363

Table 8
Problem 7: quaternary C1 (1)/CO2 (2)/nC6 (3)/H2S (4) at p = 42.5 bar and T = 200 K (SRK EoS and PR EoS).

Feed EoS Zeros of ˚(x) k∗(D̄) NFGE (Init. = V): (M1 + T1 + M2 + T2 + M3 + T3 + M4 + T4 + M5)/(T5) State

L1 SRK (0.488146, 0.073977, 0.057771, 0.380106) 0 5169(33 + 118 + 2 + 32 + 3 + 1814 + 2 + 3163 + 2)/(4583) Stable
(0.891417, 0.038885, 0.001802, 0.067897) 0.039073
(0.310236, 0.075075, 0.033354,0.058134) 0.002755
(0.174095, 0.064360, 0.010119, 0.751429) 0
(0.950456, 0.023013, 0.000023, 0.026509) 0

L1 PR (0.524173, 0.069619, 0.049934, 0.356273) 0 5304(29 + 102 + 2 + 49 + 2 + 1698 + 3 + 3417 + 2)/(4179) Stable
(0.332311, 0.071630, 0.028868, 0.567191) 0.003203
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(0.184052, 0.061133, 0.008130, 0.746685) 0
(0.894835, 0.036643, 0.001508, 0.067014) 0.037
(0.948889, 0.022815, 0.000027, 0.028269) 0

ain globality for feeds 1 and 3. For feed 1, three of the stationary
oints with k* < 0 are very close to one another.

The results are practically identical with those reported by
ofyan et al. [37], and close to those of Sun and Seider [6] obtained
ith HOMPEQ (the difference is due to different component proper-

ies and BIPs). The number of NFGE is much lower than IN/GB root
nclusion tests, but slightly higher than for PEC [37]. For the first
eed, Balogh et al. [43] reported preliminary results with the modi-
ed objective function and their stochastic method, which requires
n average of 15,686 function evaluations but it is finding only four
tationary points.

.7. Problem 7: methane–carbon
ioxide–normal-hexane–hydrogen sulphide quaternary mixture

This quaternary mixture of methane (1)–carbon dioxide
2)–normal-hexane (3)–hydrogen sulphide (4) was studied first
y Kohse and Heidemann [35]. The problem addressed here was
iven by Sun and Seider [6], and later analyzed also by Zhu et al.
9], and Burgos-Solorzano et al. [44]. We want to validate using
he phase stability routine the correct equilibrium state for a feed
omposition z = (0.5000, 0.0574, 0.0263, 0.4163)T at T = 200 K and
= 42.5 bar. These conditions are difficult due to the proximity of
tri-critical point. Pure component properties (Tc, pc, and ω) and
IPs (k12 = 0.12, k13 = 0, k14 = 0.08, k23 = 0.15, k24 = 0.12, k34 = 0.06) are
aken from Burgos-Solorzano et al. [44] (Table 9, Model B).

First the feed is found to be unstable at given T and p, with neg-
tive values of the TPD function at the global minimum, for both
oS and SRK (with k* = −0.045536) and PR (with k* = −0.029378).
he results of three-phase flash calculations performed with the
ode TUNPEQ [11] are listed in Table 7. Then, the stability of one of
he equilibrium phases (L1, the hydrocarbon-rich liquid phase) is
nalyzed (see Table 8, results for nlev = 5). The phase is stable indi-
ating a correct three-phase split. Five stationary points are found; a
fth tunneling phase (T5) is checking for globality (number of NFGE
iven in parenthesis in Table 8). Note that it is sufficient to check
he stability of only one equilibrium phase to validate the results of

ash calculations.

Surprisingly, the results obtained with the PR EoS are practically
dentical to those reported by Burgos-Solorzano et al. [44] for the
RK EoS (three-phase split and the five stationary points). On the
ther hand, the results we obtain using the SRK EoS are close to
those reported in Table 4 from Zhu et al. [9]. Apparently, Burgos-
Solorzano et al. [44] have used the PR EoS.

For this problem, simulated annealing requires 19,300 function
evaluations [9] only to find the global minimum of the TPD function
(SRK EoS), while tunneling needs only 5169 NFGE to find all station-
ary points. For the Newton-Interval method, Burgos-Solorzano et al.
[44] report 109 s to solve this problem (all stationary points), while
tunneling gives the correct answer in just a few seconds.

5. Discussion

In our previous work on phase stability [11–15], we have already
used the tunneling method to find (only) the global minimum of the
TPD function. In this work tunneling finds all stationary points of
the modified objective function with ˚ = 0, which correspond to the
stationary points of the TPD function. Note that we exploit the fact
that the value of the objective function at its global minima is known
a priori (this is a required input data in our code); this information
is not used by most methods. In fact, using the tunneling method
is almost a natural choice for solving ˚ = 0. The unique feature of
finding multiple global minima at the same level is exactly what is
required by the structural properties of the function ˚.

In most practical cases, the purpose of stability analysis is to
find only the global minimum; or, rather, to verify that the global
minimum is non-negative. If only the state (stable or unstable) of
a mixture at given conditions needs to be known, stability analysis
can be abandoned whenever a negative value of the TPD function
has been located. However, if all stationary points are known, an
initialization scheme for multiphase equilibrium calculations that
use this information may be better than one using only the global
minimum (or the minimum with the largest negative value, which
may not be the global minimum). It is known that the minima of
the TPD function closely approximate the phase compositions at
equilibrium; therefore, they are extremely good initial estimates for
the minimization of Gibbs energy to solve the phase split problem.

Several ways of exploiting the knowledge of all stationary points
of the TPD function for initializing phase split calculations have

been presented in the literature. In a series of papers, Stateva and
co-workers detailed how to use this information for solving vari-
ous phase splits. They use stability results (all zeros of the function
˚) for initializing vapor–liquid–liquid equilibrium [21], phase equi-
librium calculations for chemically reacting systems [22,45], and
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iquid–liquid–liquid equilibrium [23]. Sun and Seider [6] found all
tationary points by a homotopy continuation method, and then
sed trial-phase composition as initial estimates for searching the
lobal minimum of the Gibbs free energy. In their approach, the
arger number of phases is considered first, then the number of
hases is reduced successively until the global solution (validated
y a final stability check) is found. Wasylkiewicz et al. [18] pro-
osed an approach based on ideas from differential geometry and
he theory of differential equations to calculate all stationary points
f the TPD function, and presented an algorithm for phase equilib-
ium with multiple liquid phases. They also start with the maximum
umber of equilibrium liquid phases (assumed to be equal to the
umber of minima if not restricted by the phase rule), and repeat
he calculation sequence by decreasing the number of phases until
lobality is ascertained. At each stage, all minima of the TPD func-
ion are used for flash initialization. Later, Wasylkiewicz and Ung
36] modified this method to handle the vapor phase and to account
or chemical reactions. Hua et al. [46] proposed a combined stabil-
ty/flash procedure. They are first finding all stationary points of
he TPD function using the Newton-Interval method. Then, for the
nitial guess from stability, they use a local minimization to solve
he phase split problem. The results are again tested for stability
nd the number of phases is increased until the global solution is
ound. Müller and Marquardt [47] calculated all stationary points by
n interval Newton/bisection algorithm for flash initialization and
llustrated by several examples the benefit of global stability analy-
is in dynamic process simulations. Sofyan et al. [37] also calculated
ll the stationary points of the TPD function; they presented three
ifferent algorithms for multiphase equilibrium calculations, and
etailed how to use results from stability analysis for initialization

n each case.
In all the above-mentioned approaches, either computational

ostly, or heuristic and less reliable methods (like starting the search
rom multiple initial guesses) were used. Thus, an efficient and
eliable procedure for global stability analysis is very useful for
peeding up calculation procedures mentioned above or similar
nes.

The maximum number of global minima at the same level can be
pecified in the code in advance. For binary mixtures we set nlev = 5,
s discussed earlier. In the cases when the number of global solu-
ions is this maximum (nlev), the code will stop as soon as it has
ound all these minima, and as a consequence it will not spend any
ime checking for global optimality. However, in the cases when
he number of global minima is less than the maximum, the code
ill continue the search for other minima until another of the gen-

ral stopping conditions will be satisfied. The difference in the total
omputing time and the one spent to find all possible global minima
s considered the price for checking global optimality.

In this application, all global minima (at the same level) are
ound during the tunnelization phase, satisfying condition (15) as
n equality. This means that at the end of the tunneling phase the
ocal minimum has been detected, and thus in the minimization
hase zero, one or at most two function evaluations are needed
o get the required precision. This explains why in many cases we
eport zero function evaluations for this phase.

The early tunneling phases require few NFGE to find a new valley
f the objective function containing other putative minimum; in
he subsequent tunneling phases, after several global minima have
lready been detected, the number of other valleys with minima
t the same level is reducing, and thus the computational cost of
hese phases increases. This is especially true when finding the last

lobal minimum.

The last tunneling phase (which checks that all global minima
ave been found) is most expensive (it can represent for some prob-

ems up to 98% of the total computational effort). This kind of price
s paid, in different ways, by any global optimization method. How-
ering Journal 152 (2009) 251–263

ever, as discussed earlier, in some cases this last tunneling phase
can be avoided.

We can start with any initial estimates within the feasible
region; the tunneling method will eventually find all global min-
ima, being essentially self-starting. The examples are showing that
using three different initial points (L, V, and TS initializations) the
number of NFGE required to find all global minima is generally not
very different.

The comparison with other methods in the literature, is diffi-
cult to be based on CPU time (it depends on many factors, such
as machine, compiler, code, and stopping criteria), but the lim-
ited information about the reported number of function evaluations
taken by other global methods, suggests that our method is faster
than Newton-Interval, simulated annealing, or stochastic methods.
It should be noticed that when comparing the number of NFGE
one must take into account that the proposed method requires
the derivative of the fugacity coefficient with respect to mole frac-
tions; NFGE means here calculation of the objective function and
of the gradient vector. By solving the phase stability problem using
the function ˚ one higher level of derivatives is introduced (the
gradient vector of the TPD function requires only the fugacities).
However, for cubic EoS these derivatives have relatively simple
forms, can be calculated at a low cost once fugacities are available,
and they are available in practically all simulation packages. The
calculation of fugacity derivatives with respect to mole fractions in
order to calculate analytically the gradient vector of ˚ is another
price to be paid for using the tunneling gradient-based method
to minimize ˚. However, this price is not high at all; it is worth
noting that tunneling finds all the stationary points of the objec-
tive function with almost the same computational effort than it
finds the global minimum (by comparing the number of NFGE with
those reported in our previous publications on solving the stability
problem by using tunneling).

Regarding future work, the next step would be to use the parallel
version of the tunneling method [34]. In the parallel version, as all
the processors are searching for points in another valley (at the tun-
neling phase), from different initial points (first in a neighbourhood
of the last local minimum and in the whole feasible region after-
wards), they explore efficiently several regions of the feasible space
simultaneously. The formulation of phase stability testing with the
modified objective function is particularly suited for parallelization.

Another important phase equilibrium problem, somewhat sim-
ilar in nature, namely mixture critical points calculation, can also
be formulated as a global optimization problem (two-dimensional,
with molar volume and temperature as primary variables) with
multiple global minima at a known level. This approach is of inter-
est for mixtures that may have several critical points, or no critical
point at all. Finally, the formulation of the stability problem as
treated here in terms of reduced variables [48] is currently being
investigated.

6. Conclusions

The gradient-based tunneling global optimization method is
used to find multiple global minima at the same level (known in
advance, with ˚ = 0) for the phase stability problem with cubic two-
parameter EoS. Any stationary point of the tangent plane distance
function is a global minimum of the modified objective function.
The tunneling method is able to find efficiently and reliably all min-
ima of interest for a modified objective function for phase stability
testing; the method proposed here for stability testing is faster than

most global methods proposed in the literature. A variety of numer-
ical experiments are carried out at difficult conditions, proving the
ability of the tunneling method to solve the phase stability prob-
lem. While in our previous work on global optimization applied to
phase equilibrium problems we have focused on finding only the
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lobal minimum, in this work all stationary points of the objective
unction are found.
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